Simplification of millimeter-wave radio-over-fiber system employing heterodyning of uncorrelated optical carriers and self-homodyning of RF signal at the receiver.

نویسندگان

  • A H M Razibul Islam
  • Masuduzzaman Bakaul
  • Ampalavanapillai Nirmalathas
  • Graham E Town
چکیده

A simplified millimeter-wave (mm-wave) radio-over-fiber (RoF) system employing a combination of optical heterodyning in signal generation and radio frequency (RF) self-homodyning in data recovery process is proposed and demonstrated. Three variants of the system are considered in which two independent uncorrelated lasers with a frequency offset equal to the desired mm-wave carrier frequency are used to generate the transmitted signal. Uncorrelated phase noise in the resulting mm-wave signal after photodetection was overcome by using RF self-homodyning in the data recovery process. Theoretical analyses followed by experimental results and simulated characterizations confirm the system's performance. A key advantage of the system is that it avoids the need for high-speed electro-optic and electronic devices operating at the RF carrier frequency at both the central station and base stations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal

This study presents a full-duplex Radio-over-Fiber (RoF) system providing the users' wireless access with a bit rate of 10 Gbps over 40 GHz radio carrier. This system can be used in a centralized radio access network (C-RAN) architecture because we provide a fully analog front haul link between central station and base station. We can consider it as infrastructure between remote radio heads (RR...

متن کامل

Fiber-Optic Broadband Signal Distribution Link Based on a Millimeter-Wave Self-Heterodyne Transmission/Optical Remote Heterodyne Detection Technique

A fiber-optic broadband signal distribution link based on a millimeter-wave self-heterodyne transmission/optical remote heterodyne detection technique was developed. To avoid having to use expensive optical and millimeter-wave devices to construct a frequency-stable fiber-optic millimeter-signal transmission system, a millimeter-wave self-heterodyne transmission technique was used, in which tra...

متن کامل

Effect of Nonlinear Phase Variation in Optical Millimetre Wave Radio over Fibre Systems

In this paper, we propose an optical millimetre wave radio-over-fibre (mm-wave RoF) system that uses a dual drive Mach Zehnder modulator (DD-MZM), which is biased at the maximum transmission biasing point, to generate an optical double sideband-suppressed carrier. The input to the DD-MZM are binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8-phase shift keying (8-PSK) and...

متن کامل

146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.

We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-...

متن کامل

Dispersion tolerant radio-over-fibre transmission of 16 and 64 QAM radio signals at 40 GHz

Introduction: Radio-over-fibre (RoF) techniques are attracting much attention from manufacturers and radio network operators for the deployment of flexible and cost-effective radio access systems. For the emerging broadband wireless standards, operating at carrier frequencies beyond 5 GHz, one of the main challenges of RoF techniques is the generation and remote delivery of microwave signals to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2012